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INTRODUCTION

The nonlinear conjugate gradient (CG) 
method was designed to solve the following 
unconstrained optimization problem: 

min ( ),
nx R

f x
∈

              (1)

w h e r e  : nf R R→  i s  a  c o n t i n u o u s l y 
differentiable function (Ismail Mohd et al., 
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2007). The iterative formula of the CG method 
is given by

1k k k kx x dλ+ = +              (2)
and

1,k k k kd g dγ −= − +               (3)

where ,  0 0d g= −  fo r  0,1,k n= …  and 
( )k kg f x= ∇ , kλ  were chosen to satisfy 

some line search conditions along the search 
direction, kd , and kγ  is a scalar parameter.

The idea of incorporating a pre-
conditioner to the CG method is initiated by 
Raydan (1997), where the spectral gradient 
is combined with the conjugate gradient 
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directions. This is an iterative algorithm to generate a sequence , 0,1, 2, ,kx k n= …  as presented 
in (1) and (2), where kd  is a spectral gradient search direction in the successive iterations 
generated by:

1 1 ,k k k k kd g sβ γ+ += − +               (4)

where kβ  is a parameter that defines different CG methods, and 1k k ks x x+= −  (Andrei, 2010).
Unexpectedly, the spectral gradient choice associated in this algorithm shows more efficient 

results than sophisticated CG methods in many cases. It showed that spectral gradient and 
conjugate gradient combination produced more efficient algorithms (Raydan, 1997).

Andrei (2007) presented a new preconditioned conjugate gradient (PRECG) method, 
where the scaled memory-less BFGS update was used as the pre-conditioner. The scaling 
factor in the pre-conditioner was selected as a matrix, which was reset when the Powell 
restarted criterion (Powell, 1977) holds to ensure that the search directions would be descent 
directions. Consider (1), where the function f has continuous partial derivatives, and kd  is a 
search direction generated by:

1 1 ,k k k k kd g sθ γ+ += − +               (5)

For 0,1, 2, , ,k n= …  where kθ  is a parameter to be computed, and kg  denoting )( kf x∇  
is selected to minimize f along the search direction,  kd , with 1k k k k ks x x dλ+= − = , and kγ  
is a scalar parameter to be determined. 0

nx R∈ is an arbitrary initial value and the iterative 
process is initialized with an initial point 0x and 0 0d g= − .

From the success of the spectral gradient method used by Raydan (1997) and Andrei’s 
scaled memory-less BFGS method (Andrei, 2007) in the preconditioning technique, we 
developed a new pre-conditioner, kD , which is a diagonal matrix based on both the spectral 
gradient and matrix preconditioning ideas.

DIAGONAL PRECONDITIONED CONJUGATE GRADIENT ALGORITHM

To incorporate the correct inverse Hessian information into the preconditioner, kD , we let the 
diagonal pre-conditioner kD  to satisfy the weak-secant equation of Dennis and Wolkowicz 
(1993), as follows:

T T
k k k k ky s y D y=              (6)

With this aim, we let k 1s k kx x −= −  and k 1y k kg g −= − , and consider the minimization 
problem:

21min
2 k FD I− 

            (7a)

( )s.t. T T T
k k k k k k ky D I y y s y y− = −           (7b)
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where F.   denotes the standard Frobenius norm.
Since the objective function in (7a) and the feasible set is convex, it gives a unique solution 

for problems (7a) and (7b). Using the method of Lagrangian function, we can obtain:

( )T T
k k k k

k kT
k k k

y y y sD I G
y G y

−
− =

             (8)

where ( ) ( )( )2 2(1) ( )( ) , , ( ) n
k k kG diag s s= … .

Finally, by substituting ( )2T
k k k ky G y tr G= , where ( ).tr denotes the trace operator, it gives 

a diagonal pre-conditioner, which satisfies (6), as follows:

2

( )
( )

T T
k k k k

k k
k

y s y yD I G
tr G
−

= +
           (9)

It is shown that the diagonal preconditioner kD in (9) is a special class of diagonal Hessian 
approximation derived by Leong et al. (2010), Farid and Leong (2011), Leong et al. (2011), 
Farid et al. (2010), Leong and Hassan (2009), and Hassan et al. (2009).

In this case, the new PRECG method search direction 1kd + is given by: 

1 1 1
1 1 1 1 1 11

T T T T
k k k k k k k k

k k k k k k k kT T T T
k k k k k k k k

g s y y g s g yd D g y s
y s y s y s y s

θ θ θ+ + +
+ + + + + +

    
= − + − + −    

    

                 (10)

The proposed pre-conditioner kD is in diagonal matrix form, where the storage requirements 
is of ( )O n . Moreover, this pre-conditioner kD satisfies the weak-secant equation of Dennis and 
Wolkowicz (1993), which is a valid approximation of inverse Hessian.

The PRECG algorithm has the following steps:

Step 1. Given 0
nx R∈ , set 0 0d g= − , 0 01/ gλ =    and k = 0. Update

1 0 0 0x x dλ= +

Step 2. For 1k ≥ , calculate kλ  which satisfying Wolfe conditions. Compute the 
direction kd  as in (10). Update the variables 1k k k kx x dλ+ = + . Then, 
compute ( )1 1,k kf x g+ +  and 1k k ks x x+= − , 1k k ky g g+= − .

Step 3. Test for the stopping condition. The iterations are stopped if stopping 
condition is satisfied. Else, set 1k k= +  and go to Step 2.

The Assumption 1 below is to guarantee the existing G is bounded.
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Assumption 1

1. ( )f x is twice continuously differentiable and G denotes the matrix of second derivatives 
of ( )f x .

2. G is bounded, that is ( )2 2 2
1 2

Tm x x f x x m x≤ ∇ ≤    , where 1 20 m m< ≤ .

3. Function ( )f x is strongly convex and has Lipschitz continuous on gradient in the level set 
( ) ( ){ }0 0: ,nL x R f x f x= ∈ ≤  where there exists constants 0µ >  and L such that

( ) ( )( ) ( ) 2T
f x f y x y x yµ∇ −∇ − ≥ −   and ( ) ( )f x f y L x y∇ −∇ ≤ −    , for all x and y 

from L0.

This proposed pre-conditioner Dk is proved to be bounded in such a way that we can 
expect the corresponded PRECG method to converge globally.  With the aim to show that the 
proposed preconditioner Dk is bounded, so we have the following lemma:

Lemma 1: Assume that 0 0FD σ≤  , where 0σ  is a constant. Then, for all 0k ≥ , 
k F kD σ≤  , where kσ  is some constant and 0kσ ≥ . If we can show that the diagonal pre-

conditioner Dk satisfies k F kD σ≤  , and then the diagonal pre-conditioner Dk is bounded 
above.

Proof : Let ( )( )i
k kD diag d= , ( ) ( )2 21( , , )n

k k kG diag y y= …  and 
( )M

ky be the largest component 
of ky .

Then from (9), we have

( ) ( ) 2
2

( )1 (( ) )
(

.
)

T T
i ik k k k

k k
k

y s y yd y
tr G
−

= +

It follows from Assumption 1 that we have,

( )
( )

2 2

( ) 22
4

1

1 ( ) .
( )

k k
Mi

k ki
k

y y
md y

y

−
≤ +

∑

   

and the fact that 
( ) ( )2 2 2( ) ( )i M

k k ky y n y= ≤∑   gives

( )
( )2( ) 4

4

1 1
1 ( ) .

( )
Mi

k ki
k

n
m

d y
y

−
≤ +

∑

Finally, it leads to ( )

2

11 1 .i
kd n

m
≤ + −
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Hence, we have k kD σ≤   where 2

2

1 1 . k n n
m

σ = + − 

Below is the convergence result of our new algorithm when the objective function ( )f x  
satisfies Assumption 1 (iii).

Theorem 1.1 If at every step of the conjugate gradient given in (2) with the step length kλ  
selected to satisfy the Wolfe conditions (Wolfe, 1969) and 1kd +  is given by (10), then either 

0kg =  for some k or 0limk kg→∞ = .

Proof: From 0 0d g= − , we have 2
0 0 0 0Tg d g= − ≤  . When (10) is multiplied by 1

T
kg + :

( )( )( ) ( ) ( )22 2
1 1 1 1 1 1 1 1 1 12

1 2 ( )( )
( )

T T T T T T T T
k k k k k k k k k k k k k k k k k k k kT

k k

g d g g y g s y s g s y s y y g s
y s

σ θ θ+ + + + + + + + + +
 ≤ − + − −  

 

( )( )( ) ( ) ( )22 2
1 1 1 1 1 1 1 1 1 12

1 2 ( )( )
( )

T T T T T T T T
k k k k k k k k k k k k k k k k k k k kT

k k

g d g g y g s y s g s y s y y g s
y s

σ θ θ+ + + + + + + + + +
 ≤ − + − −  

 

and with 1( )T
k k ku s y g +=  and 1( )T

k k kv g s y+= , we can then get the following by applying 

the inequality 2 21 ( )
2

Tu v u v≤ +     to the second term of the right hand side of the above 
inequality:

( )2

1
1 1 .

T
k kT

k k T
k k

g s
g d

y s
+

+ + ≤ −
           (11)

Therefore, by Wolfe’s condition, 1 2
T T

k k k kg s g sβ+ ≥ ,  1 1 0T
k kg d+ + <  for every 

0,1,2, , .k n= …  

By strong convexity, we have 2
1( )  T T

k k k k k k ky d g g d dµ λ+= − ≥   .

Here 0kg ≠  implies for all k by Theorem 1.1, where 0T
k kg d < . f is bounded from 

below due to its strongly convex over L0. By summing over k, the Wolfe conditions
( ) ( )1 1

T
k k k kf x f x g sβ+ < + , we have:

0

 .
k

T
k k kg dλ

=

∞

→ −∞∑

Consider that dk is a descent direction and the lower bound for kλ  which satisfies the Wolfe 
condition, 

1 2
T T

k k k kg s g sβ+ ≥ , then

2
2

1
.

T
k k

k
k

g d
L d
σ

λ
−

≥
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and follows with 

2

2
1

.
T
k k

k k

g d
d

∞

=

< ∞∑
              (12)

Using the inequality of Cauchy and by strong convexity, we have 2T
k k ky s sµ≥    and get

2 2 2 2
1 1 1

1 1 2

( ) .
T

T k k k k k
k k T

k k k

g s g s gg d
y s sµ µ
+ + +

+ + ≤ − ≤ − = −
     

 

Hence, from (12) it follows that,

4

2
0

.k

k k

g
d

∞

=

< ∞∑  

             (13)

From (10), when 1kθ +  is selected by spectral gradient, the direction 1kd + will then satisfy:

2

1 12 3

2 2 .k k
L Ld g

µ µ µ+ +

 
≤ + + 
 

              (14)

By inserting the upper bound (14) for kd  in (13) will yield the following:

2

0

,k
k

g
∞

=

< ∞∑  

which completes the proof. 

NUMERICAL RESULTS

In this section, we discuss some numerical experiments that are conducted in order to test the 
performance of our new gradient method for unconstrained optimization against the standard 
CG method. 

We compare the performance of a Fortran implementation of our new algorithm with the 
standard CG algorithm on a set of 50 large-scale unconstrained optimization test problems in 
extended or generalized form(Andrei, 2008). All tests are run on a 2.6 GHz Pentium IV with 
512MB of RAM and all algorithms are coded in Fortran commands. We have considered a 
number of variables 1000,2000, ,10000n = …  for each problem. For all the test runs, the 
termination condition is 610kg −≤  . The accumulated number of iterations and the average 
of the norm of gradient are used to compare the effectiveness of the results.

For convenience, the following abbreviations are used to identify a particular conjugate 
gradient method.
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1. SCG: The standard conjugate gradient method (without pre-conditioner).

2. PRECG: The preconditioned conjugate gradient method with

2

( )
( )

T T
k k k k

k k
k

y s y yD I G
Tr G

−
= +

.
Table 2 gives a summary of comparison results between PRECG algorithm and the standard 

CG method. The symbol prob and kg   mean the number of the test problems and the norm 
of the gradient of the function, respectively. The Iter  means total iteration calls. Table 3 gives 
the comparison results of the number of function evaluation for all the methods. Meanwhile, 
Table 4 summarizes the performance of the PRECG algorithm versus the SCG algorithm on 50 
problems, which achieved the least number of iteration and a lower value of gradient norms. 
The test problems are listed in Table 1.

From Table 4, the PRECG algorithm performs better than the SCG algorithm to achieve 
a minimum norm of gradients, with 31 problems out of 50 problems, as compared to the SCG 
algorithm, which is only achieved for 16 problems. In more specific, the percentage of efficiency 
for the PRECG algorithm is 30% compared to the SCG algorithm.

TABLE 1 
Test Problems and their corresponding problem number (prob) (refer to Andrei, 2008)

Problem Test problems
1 Extended Freudenstein & Roth Function
2 Extended Trigonometric Function
3 Extended Rosenbrock Function
4 Extended White & Holst Function
5 Extended  Beale Function
6 Extended  Penalty Function
7 Perturbed Quadratic Function
8 Raydan 1 Function
9 Raydan 2 Function

10 Diagonal 1 Function
11 Diagonal 2 Function
12 Diagonal 3 Function
13 Hager Function
14 Generalized Tridiagonal 1 Function
15 Extended Tridiagonal 1 Function
16 Extended Three Expo Terms Function
17 Generalized Tridiagonal 2 Function
18 Diagonal 4 Function
19 Diagonal 5 Function
20 Extended Himmelblau Function
21 Generalized PSC1 Function
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Problem Test problems
22 Extended PSC1 Function
23 Extended Powell Function
24 Extended Block-Diagonal BD1 Function
25 Extended Maratos Function
26 Extended Cliff Function
27 Quadratic Diagonal Perturbed Function
28 Extended Wood Function
29 Extended  Hiebert Function
30 Quadratic QF1 Function
31 Extended  Quadratic Penalty QP1 Function
32 Extended Quadratic Penalty QP2 Function
33 Quadratic QF2 Function
34 Extended EP1 Function
35 Extended Tridiagonal 2 Function
36 BDQRTIC (CUTE) Function
37 TRIDIA (CUTE) Function
38 ARWHEAD (CUTE) Function
39 NONDIA (CUTE) Function
40 NONDQUAR (CUTE) Function
41 DQDRTIC (CUTE) Function
42 EG2 (CUTE) Function
43 DIXMAANA (CUTE) Function
44 DIXMAANB (CUTE) Function
45 DIXMAANC (CUTE) Function
46 DIXMAANE (CUTE) Function
47 Partial Perturbed Quadratic PPQ1 Function
48 BroydenTridiagonal Function
49 Almost Perturbed Quadratic Function
50 Tridiagonal Perturbed Quadratic Function

TABLE 2 
A comparison of the CG and PRECG methods in terms of total iteration calls and gradient norm

prob CG  algorithm PRECG  algorithm

Iter kg  Iter kg 

1 91 1.47e-05 71 3.85e-06
2 701 3.97e-06 696 2.83e-06
3 248 9.27e-06 240 7.08e-06
4 305 9.36e-06 301 5.79e-06

TABLE 1 (continue) 
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prob CG  algorithm PRECG  algorithm

Iter kg  Iter kg 

6 1067 1.12e-06 1061 1.93e-06
7 7080 5.72e-06 7076 5.31e-06
8 6057 4.45e-06 5991 4.32e-06
9 30 3.57e-07 30 3.57e-07
10 7680 3.84e-06 7256 4.31e-06
11 4773 1.90e-06 3954 1.77e-06
12 16969 6.97e-05 17245 6.71e-05
13 7896 1.84e-06 9732 1.50e-06
14 370 2.55e-06 380 2.34e-06
15 102 2.64e-05 68 1.78e-05
16 67 3.33e-06 60 6.12e-06
17 546 2.44e-06 532 2.71e-06
18 20 1.76e-06 31 4.32e-11
19 30 2.81e-10 30 2.81e-10
20 70 5.66e-06 63 6.29e-07
21 6075 2.17e-06 7134 1.79e-06
22 80 4.50e-09 89 3.38e-06
23 545 1.95e-05 573 2.88e-05
24 219 2.74e-05 2286 -
25 448 9.91e-05 447 1.75e-05
26 207 1.26e-05 16059 -
27 3026 9.15e-06 3131 8.83e-06
28 989 1.98e-05 1079 1.94e-05
29 512 4.12e-06 520 1.95e-06
30 6923 5.82e-06 7195 5.42e-06
31 528 1.17e-06 685 5.51e-06
32 128 1.98e-07 250 1.74e-07
33 7836 4.49e-06 8283 4.50e-06
34 18 6.56e-05 18 6.56e-05
35 319 3.44e-06 331 2.93e-06
36 18300 5.19e-05 18572 1.08e-04
37 19080 7.18e-03 18649 4.60e-02
38 31 1.29e-07 30 1.39e-07
39 298 2.51e-07 109 2.30e-08
40 19465 6.46e-05 18261 9.28e-06
41 51 2.53e-07 50 2.50e-07
42 16779 6.03e-04 11096 2.41e-04

TABLE 2 (continue) 
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prob CG  algorithm PRECG  algorithm

Iter kg  Iter kg 

44 149 2.26e-06 193 5.17e-06
45 174 4.89e-06 245 1.36e-06
46 4015 6.14e-06 3967 6.41e-06
47 1107 1.72e-05 1053 1.60e-05
48 634 2.22e-06 645 2.83e-06
49 7360 5.17e-06 7002 4.98e-06
50 6826 6.57e-06 7149 6.08e-06

TABLE 3 
A comparison of the methods in terms of the Total Number of Function Evaluation for all n

Pro
Methods (Number of functions calls)

Pro
Methods (Number of functions calls)

CG PRECG CG PRECG
1 265 178 26 300 16147
2 1076 1068 27 4912 5090
3 489 482 28 1875 2030
4 613 546 29 1097 1085
5 233 188 30 9084 9456
6 25945 26366 31 12937 15435
7 9281 9228 32 308 590
8 8468 8376 33 10314 10902
9 90 90 34 59 59

10 21881 17385 35 582 553
11 6999 5781 36 478435 468394
12 354441 355758 37 25118 24330
13 238400 298785 38 101 80
14 5306 5210 39 1379 224
15 209 156 40 33513 32610
16 138 140 41 132 130
17 884 860 42 468361 294247
18 60 81 43 136 179
19 90 90 44 248 2808
20 160 153 45 298 3677
21 67721 67912 46 5521 5159
22 180 189 47 1773 1713
23 1015 1050 48 1010 1052
24 474 3294 49 9649 9253
25 970 932 50 8986 9386

TABLE 2 (continue) 
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TABLE 4 
A comparison of CG and PRECG (All problems)

CG  performs better PRECG performs better Equal performance
function calls 21 26 3
 norm of gradient 16 31 3

CONCLUSION
In this paper, we presented the performance of a new diagonal preconditioned conjugate 
gradient (PRECG) method. Accordingly, the PRECG method was also compared against the 
SCG method based on 50 benchmark problems. Based on our numerical experiments, the 
PRECG method has been shown to outperform the SCG method. Thus, it is concluded that 
the introduction of PRECG method is worthwhile.
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